Search results for "Unbaffled tank"
showing 8 items of 8 documents
SOLID-LIQUID SUSPENSIONS IN UNBAFFLED TANKS
2009
Unbaffled stirred tanks are seldom employed in the process industry as they are considered poorer mixers than baffled tanks. However, they might provide significant advantages in a wide range of applications like crystallization processes as well as for food and pharmaceutical industries, where the presence of baffles is often undesirable. In the present work solid-liquid suspension in an unbaffled stirred tank was investigated. A novel experimental method (steady cone radius method) was devised to ease the evaluation of the minimum impeller speed for complete particle suspension (Njs). Experiments encompassed a quite wide range of particle sizes, densities and solids concentration. The Njs…
On the assessment of power consumption and critical impeller speed in vortexing unbaffled stirred tanks
2017
Abstract Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a number of processes and bio-processes where the presence of baffles is undesirable. Notwithstanding the increasing industrial interest towards unbaffled tanks, available experimental information on their behaviour is still very poor, even for important parameters such as mechanical power drawn and critical impeller speed (Ncr) at which the transition between non-aerated (sub-critical regime) and aerated (super-critical regime) conditions occurs. In this work the influence of Reynolds and Froude numbers on power consumption characteristics of unbaffled stirred tanks is presented…
Mass transfer and hydrodynamic characteristics of unbaffled stirred bio-reactors: Influence of impeller design
2014
Abstract Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a range of processes where the presence of baffles is undesirable for some reason. For instance, in the case of shear sensitive cell cultivation (e.g. human cells), unbaffled tanks have been recently found to be able to provide sufficient mass transfer through the free surface vortex. As a consequence the need for bubble formation and subsequent bursting, along with relevant cells damage, is conveniently avoided. In this work the influence of impeller geometry on mass transfer performance and power demand of an unbaffled stirred vessel operating both in sub-critical conditions (t…
Particle suspension in top-covered unbaffled tanks
2010
Abstract Unbaffled stirred tanks are seldom employed in the process industry as they are considered poorer mixers than baffled vessels. However, they may be expected to provide significant advantages in a wide range of applications (e.g. crystallization, food and pharmaceutical processes, etc.), where the presence of baffles is often undesirable. In the present work solid–liquid suspension in an unbaffled stirred tank is investigated. The tank was equipped with a top-cover in order to avoid vortex formation. A novel experimental method (the “steady cone radius method”, SCRM) is proposed to determine experimentally the minimum impeller speed at which solids are completely suspended. Experime…
Power Consumption in Uncovered Unbaffled Stirred Tanks: Influence of the Viscosity and Flow Regime
2013
Notwithstanding the increasing industrial interest toward unbaffled tanks, available experimental information on their behavior is still scant, even for basic quantities such as the mechanical power drawn. In this work, the influence of the Reynolds and Froude numbers on the power consumption characteristics is presented for unbaffled stirred tanks operating both in nonaerated conditions (subcritical regime) and in aerated conditions (supercritical regime), i.e., when the free surface vortex has reached the impeller and the gas phase is ingested and dispersed inside the reactor. Experimental results obtained at various liquid viscosities show that power numbers obtained in subcritical condi…
Comparison of Agitators Performance for Particle Suspension in Top-Covered Unbaffled Vessels
2015
Power savings is a problem of crucial importance nowadays. In process industry, suspension of solid particles into liquids is usually obtained by employing stirred tanks, which often are very power demanding. Notwithstanding tanks provided with baffles are traditionally adopted for this task, recent studies have shown that power reductions can be obtained in top-covered unbaffled vessels. In the present work experiments were carried out in a top-covered unbaffled vessel with a diameter T=0.19m and filled with distilled water and silica particles. Two different turbines were tested: a standard six-bladed Rushton Turbine (RT) and a 45° four bladed Pitched Blade Turbine (PBT). For the case of …
Unbaffled, Stirred Bioreactors for Animal Cell Cultivation
2017
One of the main features of animal cell bioreactors is that the cultured cells lack a strong membrane and are therefore more prone to shear damage. It is widely accepted that animal cell damage in aerated bioreactors is mainly related to burst bubbles at the air–liquid interface. A viable alternative to sparged bioreactors, aimed at minimizing cell damage, may be represented by uncovered, unbaffled, stirred tanks, which are able to provide sufficient mass transfer through the deep free surface vortex that takes place under agitation. As a consequence the need for bubble formation and subsequent bursting accompanied by cell damage is conveniently avoided. In this chapter, mass transfer perfo…
CFD simulation of radially stirred baffled and unbaffled tanks
2019
Stirred tanks typically employed in process industries are provided with baffles. Although the presence of baffles is known to guarantee good mixing rates, unbaffled vessels may be compulsory in some applications as crystallization, bioremediation, biotechnology and ore industry. A better understanding of unbaffled stirred vessels flow dynamics may allow (i) a proper design to be performed and (i) conditions/processes where baffle presence can be avoided to be recognized. In the present study, the k-ω SST was used to simulate an unbaffled tank from early to fully turbulent regime (Re≈600-33,000). The unbaffled tank simulated has a diameter T=0.19m and is stirred by a standard six-bladed Rus…